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Simulations

data for linear chains.

Introduction

Monte Carlo (MC) method is a powerful
tool in studying a large variety of molecular
systems. We apply an efficient version of
Monte-Carlo method, the entropic sam-
pling (ES) %! within Wang-Landau (WL)
algorithm,m to investigate lattice models of
linear and star-like polymers starting with a
single neutral polymer chain. The efficiency
of ES-WL algorithm for simulations of
polymer lattice models was demonstrated
in previous works of our group ! and of
other authors.'*14!

Complicated polymer systems such as
stars, brushes or dendrimers attract much
attention during last decades being subjects
of a number of theoretical !>l and
experimental ['718) studies. It is important
that star polymers can be used for DNA and
drug delivery into living cells;['”**] they are
also applied for transport and separation of
metal cations in a liquid membrane sys-
tem.['] Star polymers can be regarded as
the simplest branched-type polymers where
multiple linear chains are connected to a
common core. So their investigation can
serve as a key to understanding the proper-
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ties of more complex polymer architectures
such as dendrimers."!

Analytical treatment in theory of star
polymers meets with great difficulties due
to their fairly complex architecture hence
their computer simulation becomes rather
important.”'*1% In the present work we
investigate thermodynamic and structural
properties of star-lake polymers and com-
pare them with properties of linear chains.
Specifically interesting is to obtain thermal
and structural properties (internal energy,
heat capacity, entropy, mean square radius
of gyration) as functions on temperature. It
is helpful also to understand the transition
phenomena in the investigated models.

The structure of the article is as follows.
Section Model and method contains detailed
description of the model used in our study
and the algorithm of our program. In
section Results and discussion we consider
athermal and thermal cases and present
results of our simulations for chains and
stars. Section Conclusion contains final
remarks.

Model and Method
In our simulations we use a semi-phantom
(nonreversal [21]) random walk P! on a

simple cubic lattice with a unit step as a
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basic reference system. The term semi-
phantom random walk implies that the
back (reversal) steps are prohibited. The
chain of length N has N bonds and N+1
monomers (lattice nodes). The polymer is
described by a set of coordinates (x;, i, zi),
where i = [0,N]. The first point and the first
segment of the chain are fixed. The other
segments are generated as a semi-phantom
walk. The arms of the star polymer are
generated in the same way.

In order to modify the conformation of
the chain or the arm of the star we select
randomly one of the nodes from 1 to N-I
(monomer k() and change randomly and
nonreversally the coordinates of the mono-
mers between kq and ky -+ where [ is the
number of segments in the modified piece.
The length of the modified piece is taken in
the range [N/20] -+ [N/10]. The rest of the
chain (the tail [ko+/, N]) undergoes a
parallel shift, taking into account that after
this shift the chain should remain semi-
phantom (otherwise we rebuild the last
segment of the modified piece).

We consider two cases: athermal and
thermal. The athermal case signifies exclu-
sion of intersections (overlaps of mono-
mers) and taking into account only self-
avoiding conformations (SACs) among
generated semi-phantom chains. The ratio
of SACs yields excess entropy. In the
thermal case interactions of nonbonded
monomers in a SAC are accounted for. We
attribute the energy € (¢>0 or £<0) to
each nonbonded monomer pair occurring
at a unit distance (closest contact). So the
potential between two nonbonded mono-
mers is given by:

oo r=0
uiry=<e r=1 1)
0 r>1

The SACs are selected homogeneously
from the generated semi-phantom trajec-
tories.

In the thermal case we obtain the
distribution as a function of the number
of contacts m that is equivalent to the
distribution as a function of the energy,
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since in our model the energy of the
polymer is E, =em. This distribution is
obtained within WL procedure Bl in the
following way. The range of contacts
[0,mmax] is divided into Np=mp.x+1 ele-
ments (‘“‘boxes”) so that i-th box corre-
sponds to conformations having i contacts.
We do not have an exact expression for
Mmax, DUt for the chains there exists an
estimate 1%

Mmax < Intla.N — d(N + 1)Ab +d]
= Int2N — 3(N + 1)** + 3], 2)

where N is the chain length; d =3, space
dimension; a.=d—1, Ab=(d—1)/d. For
stars mmay is slightly lower than for chains
because of the imposed restrictions —
grafting of arms to the common center. The
array g including N, elements is introduced,
each of them corresponding to its own
energy. Initially all elements of g are taken
equal to unity. It appears to be more
convenient to use the array of quantities
S(E) = Ing(E) (initially all S; = 0). At each
MC step the conformation of the system is
modified in the manner described above.
Let E; = m;e and E;=mje be the energies of
the system before and after modification.
Each of them hits its own box — i or j
respectively (i and j can coincide). In this
case the transition is accepted with the
probability !

p(E; — E;) = min (1§)
&

= min(l,es”sf)7

®)

where g;, g, S'i, Sj are current values of i-th
and j-th elements of the array g and S
correspondingly (actually we operate only
with the array S). In the case of failure the
system remains in the initial state. At each
visit of k-box (in case of acceptance new
conformation k=j, in case of nonaccep-
tance k = i) we change the k-th element of S:
AS is added to S;. A number of these steps
constitute a sweep during which AS is kept
constant. At each next sweep AS is reduced:
AS —cAS with increment 0<c<1. We
used ¢=0.8+0.9 and the initial value
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AS =0.001. The number of sweeps used was
in the range 30 = 60.

Simultaneously with the array S the
array of visits V with zero initial values is
introduced. At each MC step we add 1 to
Vi-element that corresponds to a visit of the
state k. We watch that during calculations
the histogram of visits becomes and holds
further sufficiently uniform (““flat””). Using
this way ES-WL algorithm the auto adjust-
ment of visit probabilities is achieved.

At the end of the computer experiment
when the array of visits becomes homo-
geneous the array of density of states is
calculated as exp(S(E)) and is normalized
to unity (we designate it as g(E)). This
normalization is important for calculating
the canonical part of entropy and free
energy.

Results and Discussion

Test of the Method (Polymer Chains)

The main aim of our work is the investiga-
tion of star shaped polymers. We precede it
by testing the method on linear chains.

In the first test the distribution of semi-
phantom random walks as a function of the
number of intersections n for chains of
several lengths was estimated (Figure 1).
This distribution is obtained with the aid of
ES-WL-procedure in the same way as it is

12

> 20
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© 40
0 exact
107 b
o
10% :
5 P i ’ i
10%g 50 100 150 200
n
Figure 1.

Distribution of the number of semi-phantom confor-
mations as a function of the number of intersections
for N=12 (circles), 20 (diamonds), 30 (triangles), 40
(crosses) . squares indicate the exact data.
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described before. In this case the range of n
[0,imax] is known exactly. The expression
for nmax is given below (see equation 4).
The range of n is divided into elements
(boxes) so that the i-th element corresponds
to conformations having i intersections.
Accordingly, we have N, =npax + 1.

The results of the test (Figure 1) are in
good agreement with the available exact
data. For small N (e.g. for N=12) all values
of n can be calculated by direct enumera-
tion of all 6-5™ semi-phantom conforma-
tions. For greater n it becomes difficult
though for arbitrary N the exact data can be
obtained for the maximum number of
intersections for which the probabilities
are the smallest.

Indeed the maximum number of inter-
sections for a semi-phantom chain with the
length N corresponds to a square with a unit
side length and it can be determined by an
exact formula:

=3y g g @

where [] is the integer part of the argument,
Cly,q and Cfy ., are the binomial coeffi-
—4[%] and can have values
x=0, 1, 2, 3. Proof of (3) is presented in
Appendix 1.

It is very important that the number of
such conformations (number of squares)
does not depend on N and is equal to
6-4 =24 (6 directions with 4 cases for each
direction). So the corresponding normal-
ized value of g relatively to the total
number of conformations for the semi-
phantom chain, 65", is g, =45V

Figure 1 shows that our algorithm
enables us to safely obtain distributions
with probability at least down to 102" For
N=12, 20, 40 exact values are gumax=
8.19-107% 2.10-107", 2.20- 107, against
the obtained ES-WL values gumax=
8.07-107%, 1.90-107", 1.94-107%". So the
deviations of calculated values from the
exact ones in points of the smallest
probabilities are within 10%.

As a result of the second test the
distributions of SACs g, as a function of
the number of contacts for N=12, 30, 50,

cients, x =N
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Figure 2.

Distribution of self-avoiding conformations (SACs) as
a function of the number of contacts for N=12, 30,
50, 100 (points - this work) . Open circles - data
from work ! (based on phantom random walks)
Vertical dashed lines are the estimation of m,,, for
chains 2. subscript “0” in gom denote that we
consider conformations with o intersections.

100 are presented in Figure 2 in comparison
with data from.!! Subscript “0” in go,,
denotes that we consider conformations with
0 intersections, subscript “m’ denotes the
number of contacts. Vertical dashed lines in
Figure 2 are the estimation of myp,,, for
chains®?! (equation 2). There is a good
agreement of our data with that from® in a
wide range of m though at largest m a
discrepancy is observed. For the greatest N
(N=100) the discrepancy at large m is the
greatest. Here the advantage of semi-phan-
tom random walk in comparison with the
phantom one is clearly demonstrated: it
enables us to obtain the distribution in a
much wider range of contacts than on
the basis of phantom onesl! (Figure 2).
There still remains a problem of modeling
the compact conformations which make an
essential contribution to the energy at low
temperatures in the case of attraction.!

Star Polymer

The model of a 6-arm star polymer is
considered and the excluded volume effect
in the athermal case is studied first. The
specific excess entropy (relative to the
entropy of a corresponding phantom chain)
as a function of the number of monomers N
in the star polymer is obtained and its
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Figure 3.

Specific excess entropy (relatively to the entropy of a
phantom chain) as a function of inverse number of
segments for stars (filled dots) - WL data, approxi-
mated by least-squares fit (solid line) of the function
f(x) = Ax In(x) +Bx+D; x=1/N . For comparison
results for chains (dashed line) and for rings ! (dotted
line) are presented.

dependence on the inverse number of
segments for stars is presented in
Figure 3 compared with analogous data
for chains and for rings.!”! The WL data is
approximated by a least-squares fit (solid
line) of the function f(x) = AxIn(x) + Bx + D;
x=1/N1in much the same way as it was done
in work.’! The character of this function
corresponds to the logarithm of the well-
known scaling asymptotic relation for
linear chains.¥! The coefficients obtained
for stars: A=0.7399, B=-1.4837, D=
-0.2494, (in the case of rings they are:
A=1.6996, B=-0.7795, D=-0.2495"
for chains from the scaling relation:
A=-0.1667, B=0.1570, D=-0.2476). It is
seen from Figure 3 that at N— oo the
specific excess entropy for all three systems,
stars, rings and chains, tends to the common
limit: values of coefficients D are very close
to each other.

In the thermal case we compare polymer
chains and stars with the same number of
segments (N=230, 72, 120). The distribu-
tions go,, as a function of the number of
contacts (energy) for free chains and stars
obtained with the aid of WL-algorithm are
presented in Figure 4. The comparison
shows that difference between distributions
for chains and stars is noticeable though not

www.ms-journal.de



Macromol. Symp. 2012, 317-318, 267-275
10°
10
107"
10"
107
S 10%°
107
10%F
10" E
10 4

| o star N= 30
' O star N=72
& star N=120
* chains

0O 20 40 60 80 100 120 140 160

m

Figure 4.

Normalized distributions for SACs as a function of the
number of contacts for star with N=30 (circles), 72
(squares), 120 (triangles) and for the chains with equal
number of segment (dots) 19 vertical dashed lines are
the estimation of my,,, for chains 22,

drastic. The maxima of distributions for
stars (m =9, 18, 28) are shifted to greater m
relatively to those for chains (m =4, 12, 22).
The reason is that segments in a star are
closer to each other than in a chain because
stars’ arms are fixed at their center. With
the increase of N the relative differences
in positions of these maxima become
smaller.

Distributions g, enable us to obtain the
thermodynamic properties of investigated
systems such as internal energy, free
energy, entropy and heat capacity in a
wide temperature range.

Using gom we calculate the thermody-
namic properties:

1) Internal energy:

miax Em eXp(_ﬁEm)gOm
(E)T) =" ;
20 exp(—BE)gom
E, =cm
®)

2) Heat capacity:

_ AE)T)
¢= aT ©)

It is equivalent to the fluctuation
equation C(T) = ((E*)(T) — ((E)(T))*)/T°.
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3) Entropy:
S(B) = So + ASa + AS(B) (7)
S() =NlInv (8)
ASy = (N —1)In =1
_) )
+ ln% +Ingo
= (10)

AS(B) = B(E) +1n Y e *"gop,
m=0

where Sy — entropy of the phantom chain,
v — the number of nearest neighbors for
the lattice, AS, — excess athermal part of
the entropy for the star (see Figure 3), proof
of (9) is presented in Appendix 2, AS(B) —
thermal (canonical) part of the entropy,
B=1/kgT is the inverse temperature. In
Figures 5-8 temperature is presented in
energy units, i.e. designation 7' =kgT/¢]
and inverse temperature ' =1/T'.

In Figures 5-7 the dependences of
specific energy, specific heat capacity, and
specific excess entropy on temperature are
presented in the repulsion case (e > 0). It is
seen that for linear chains of different
length the dependences of specific energy
on temperature (Figure 5) rises with the
increase of N but differ not strongly from
each other with a tendency to a certain
limiting curve. For stars with the same
number of segments the difference is

stars

777777 chains

Figure 5.

Dependences of specific energy on temperature for
stars (solid lines) and chains (dashed lines) &, & > 0.
(E)/Nis in |¢| units. At the Y-axis the limiting values of
(E)/N for T— oo are labeled. At T—o0 (E)/N—o.
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0.20
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Figure 6.
Dependences of specific heat capacity on temperature
for stars (solid lines) and chains (dashed lines);
g>o0 bl

appreciably greater and with the increase of
N the level of curves falls. Energy for a star
is greater than for a chain with the same
number of segments. At 7=0 we have
(E)/N=0, and at T— oo we get (E)/IN—

Mmax
e(m)a(N)IN, (m), = > mgo, ). Limiting
m=0
values of (E)/N at T—oo for the star
decreases with the increase of the number
of segments, while for chains they increase.
So we can suppose, than for N— oo the
E/N(T) dependences for stars and chains
tend to the same limiting curve.

Each T-dependence of the specific heat
capacity (Figure 6) has a single maximum
both for chains and stars, at about 7=0.52
that signifies structure changes in the
molecules. It should be pointed out here
that in the case of attraction the increase of

0.00
-0.05
-0.10

-0.15

ASIN

-0.20

-0.25

-0.30

Figure 7.

Dependences of specific excess entropy on inverse
temperature for stars (solid lines) and chains (dashed
lines); &> o0 L.
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the chain length results in sharpening in the
temperature dependencies of the heat
capacity that corresponds to change of
structure having features of the phase
transition. Such behavior was observed
in"®%!" in simulations of non-charged
polymer systems and in modeling of poly-
electrolytes.”! In the case of repulsion
presented in this work there is observed a
smooth transition from purely athermal
case (SACs) for high temperatures to
complete avoidance of contacts at low
temperatures. The latter can be regarded
as an effective “swelling” of polymer chains
or star arms.

Behavior of entropy (Figure 7) has the
same features as that of energy and heat
capacity. Entropies fall with the decrease of
temperature, for stars the curves are lower
than for chains and there is a tendency to
reach some common limiting curve with the
increase of N.

The above results are presented for the
case of repulsion between monomers.
Corresponding dependences in the case
of attraction (¢ < 0) are more complex and
are presented with other corresponding
data in.”)

Using distribution g, (Figure 4) we can
also express the mean square radius of
gyration dependence on temperature
(R*)(T) using the relation

<R*>(T)=<< R*>,> (1)

Mimax

Zo < R? >exp(—EnB)gom

= ; (11)

Mmax

20 exp(—EnB)gom

where (R?),, is the average of square radius
of gyration obtained for each number of
contacts m during calculations of gg,,,.

Dependences of (R?)(T) for chains and
stars are presented both for € <0 and € >0
in Figure 8a,b.

Mean square radius of gyration deter-
mines the size of the molecule. For £ >0
dependences monotonically decrease and
for € <0 they monotonically increase with
temperature. At T—oo the dependences for
¢>0and € <0 tend to a common limit. For

www.ms-journal.de
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Mean square radius of gyration dependences on temperature for chains (a) and for stars polymers (b); € >0
(thick lines), € < o (thin lines). Chain length and total number of segments in stars N =30, 72, 120. Horizontal
dashed lines denote the limiting values of (R*) at T— oo.

stars (R%)(T) curves are of the same
character as for chains though for the stars
their values are smaller than for the chains
with the same number of segments due to
more compact structure of the stars.

Conclusion

The entropic sampling within Wang-
Landau algorithm was applied for study

Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

of 3D lattice models of polymer chains and
6-arm stars. In simulations we used a semi-
phantom random walk as a most appro-
priate reference system since in this case
the fraction of self-avoiding conformations
increases significantly compared to the
case when phantom trajectories are used
instead.*! We shoved that the specific
excess entropy of stars, rings,[s] and linear
chains tends to a common limit as the chain
length tends to infinity. This effect could be
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expected as long as with the increase of the
total number of segments the relative
contribution of the individual character of
the structure into the specific excess entropy
becomes more and more negligible.

In the thermal case we calculated energy
distributions that allowed us to obtain
thermodynamic properties of the studied
systems in a wide temperatures range:
energy, heat capacity, entropy and mean
square radius of gyration. For the case of
repulsive interaction (¢>0), we showed
that there is a single, vary smooth structural
transition of all studied polymers (chains or
stars of different sizes) with increasing
temperature. The critical temperature of
this transition is practically the same for all
studied systems.

The created computer programs and
obtained data provide us the basis for
possible further studies: considering star
polymers with longer arms and their
different numbers both within lattice and
continuous models; studying various cases
with presence of charged groups; obtaining

monomers are placed in each three angles
of the square and N/4 41 are placed in the
fourth angle. The number of intersections is
the number of pairs in each of these nodes.
In each of the first three angles we have
% /4 pairs and in the fourth angle there are
C?V/4+1 pairs. Here C¥ (or “n over k) is the
binomial coefficient, CX = #lk), There-
fore in this case the number of intersections
is 3CY )y + C}4y1- If N is not necessarily
exact multiple of 4, then N can be presented
in the form N =4[¥] +x, where x is the
residue of division of N by 4; x can have
values 0, 1, 2, 3; [...] is the integer part of
the number. Suppose that N =4[] +1.
For the chain of length 4[N/4] maximum
number of intersections is SC[ZN / 4]+C[2N s
We assume that we attach a monomer
to the chain of length 4[N/4]. Attached
monomer occupies the angle of the square
with the number of monomers [N/4] and
respectively gives addition of [N/4] intersec-
tions. For each next x =2, 3 the contribution
is similar. So we obtained the equation 3.
Also we can simplify this equation:

Nmax = 3C, + C7
ma & TEa

:3%(@44X+
-eE-+

large information on structural properties
e.g. on fluctuation characteristics of the
center of mass, on the average shape of the
star; studying of other non-liner systems
and their complexes with linear chains etc.
We hope also that results of our work could
help for construction the analytical theory
of star-shaped polymers.

+x[y] =

N —

Appendix 1

Proof of equation 3. For a semi-phantom
chain the conformation with the maximum
number of intersections is the square with a
unit side. If N is exactly divided by 4, N/4

Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Appendix 2

Proof of equation 9 for athermal part of the
entropy for the star. Let us write down the
number of semi-phantom conformations
for the 6-arm star on the SC-lattice with
total number of segments N. For generating
the first segment of the first arm there exists
v positions where v=6-the number of
nearest neighbors for the SC lattice; for
generation of the first segment of the
second arm there remains v — 1 positions
etc. The subsequent v(N/v-1)=N-6 seg-
ments are generated nonreversally and
the number of such conformations is
(v—1)""°. So the complete conformation

www.ms-journal.de
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number of the semi-phantom star with
the account of the arms permutations is
V(v — 1)N°. In order to obtain the number
of SACs the complete number of semi-
phantom conformations should be multi-
plied by normalized quantity g, (the share of
SACs among semi-phantom chains) which is
determined in the course of our computer
experiment. Thus the athermal part of the
entropy of the semi-phantom star is
In(v!(v — 1)V %gy). The obtained expression
is transformed now in the following way:

In(v!(v—1)" ")
NV
=In(!(v-1) v_NgO)

=15y

V—Nl_)gO)

N-1 -5
lnvN—f—ln(v!(v_l) =1 g0>
v v
::muN+(N—4)m(”;1)

—1)5
+lnv!%go

=1V +In(v!

oV 4 (V= DL
—2)!
+m%j§+m@.

In vV is the entropy of phantom chain (or
star) with N number of segments. So the
excess entropy is

U_1+ln(v_2)
v (v-1)

!
ASy=(N—-1)In 7 +Ingo.
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