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Thermodynamic Properties of Star Shaped Polymers

Investigated with Wang-Landau Monte Carlo

Simulations

I. A. Silantyeva,* P. N. Vorontsov-Velyaminov

Summary: Entropic sampling method within Wang-Landau algorithm is used for

simulation of lattice models of linear polymer chains and 6-arm star-shaped

polymers. The semi-phantom (i.e. nonreversal) random walk on 3D simple cubic

lattice is used as a reference system. The densities of states are obtained and on their

basis the temperature dependences of internal energy, heat capacity, entropy and

mean square radius of gyration are calculated. Results for stars are compared with

data for linear chains.
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Introduction

Monte Carlo (MC) method is a powerful

tool in studying a large variety of molecular

systems. We apply an efficient version of

Monte-Carlo method, the entropic sam-

pling (ES) [1,2] within Wang-Landau (WL)

algorithm,[3] to investigate lattice models of

linear and star-like polymers starting with a

single neutral polymer chain. The efficiency

of ES-WL algorithm for simulations of

polymer lattice models was demonstrated

in previous works of our group [4–9] and of

other authors.[10–14]

Complicated polymer systems such as

stars, brushes or dendrimers attract much

attention during last decades being subjects

of a number of theoretical [15,16] and

experimental [17,18] studies. It is important

that star polymers can be used forDNAand

drug delivery into living cells;[17,18] they are

also applied for transport and separation of

metal cations in a liquid membrane sys-

tem.[19] Star polymers can be regarded as

the simplest branched-type polymers where

multiple linear chains are connected to a

common core. So their investigation can

serve as a key to understanding the proper-
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ties of more complex polymer architectures

such as dendrimers.[20]

Analytical treatment in theory of star

polymers meets with great difficulties due

to their fairly complex architecture hence

their computer simulation becomes rather

important.[21,9,10] In the present work we

investigate thermodynamic and structural

properties of star-lake polymers and com-

pare them with properties of linear chains.

Specifically interesting is to obtain thermal

and structural properties (internal energy,

heat capacity, entropy, mean square radius

of gyration) as functions on temperature. It

is helpful also to understand the transition

phenomena in the investigated models.

The structure of the article is as follows.

Section Model and method contains detailed

description of the model used in our study

and the algorithm of our program. In

section Results and discussion we consider

athermal and thermal cases and present

results of our simulations for chains and

stars. Section Conclusion contains final

remarks.
Model and Method

In our simulations we use a semi-phantom

(nonreversal [21]) random walk [5] on a

simple cubic lattice with a unit step as a
, Weinheim wileyonlinelibrary.com
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basic reference system. The term semi-

phantom random walk implies that the

back (reversal) steps are prohibited. The

chain of length N has N bonds and Nþ 1

monomers (lattice nodes). The polymer is

described by a set of coordinates (xi, yi, zi),

where i¼ [0,N]. The first point and the first

segment of the chain are fixed. The other

segments are generated as a semi-phantom

walk. The arms of the star polymer are

generated in the same way.

In order to modify the conformation of

the chain or the arm of the star we select

randomly one of the nodes from 1 to N-l

(monomer k0) and change randomly and

nonreversally the coordinates of the mono-

mers between k0 and k0þ l where l is the

number of segments in the modified piece.

The length of the modified piece is taken in

the range [N/20]� [N/10]. The rest of the

chain (the tail [k0þ l, N]) undergoes a

parallel shift, taking into account that after

this shift the chain should remain semi-

phantom (otherwise we rebuild the last

segment of the modified piece).

We consider two cases: athermal and

thermal. The athermal case signifies exclu-

sion of intersections (overlaps of mono-

mers) and taking into account only self-

avoiding conformations (SACs) among

generated semi-phantom chains. The ratio

of SACs yields excess entropy. In the

thermal case interactions of nonbonded

monomers in a SAC are accounted for. We

attribute the energy e (e> 0 or e< 0) to

each nonbonded monomer pair occurring

at a unit distance (closest contact). So the

potential between two nonbonded mono-

mers is given by:

uðrÞ ¼
1 r ¼ 0
" r ¼ 1
0 r > 1

8<
: (1)

The SACs are selected homogeneously

from the generated semi-phantom trajec-

tories.

In the thermal case we obtain the

distribution as a function of the number

of contacts m that is equivalent to the

distribution as a function of the energy,
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since in our model the energy of the

polymer is Em¼ em. This distribution is

obtained within WL procedure [3] in the

following way. The range of contacts

[0,mmax] is divided into Nb¼mmaxþ 1 ele-

ments (‘‘boxes’’) so that i-th box corre-

sponds to conformations having i contacts.

We do not have an exact expression for

mmax, but for the chains there exists an

estimate [22]

mmax � Int½acN � dðN þ 1ÞDb þ d�

¼ Int½2N � 3ðN þ 1Þ2=3 þ 3�; (2)

where N is the chain length; d¼ 3, space

dimension; ac¼ d� 1, Db¼ (d� 1)/d. For

stars mmax is slightly lower than for chains

because of the imposed restrictions –—

grafting of arms to the common center. The

array ~g including Nb elements is introduced,

each of them corresponding to its own

energy. Initially all elements of ~g are taken

equal to unity. It appears to be more

convenient to use the array of quantities
~SðEÞ ¼ ln ~gðEÞ (initially all ~Si ¼ 0). At each

MC step the conformation of the system is

modified in the manner described above.

Let Ei¼mie and Ej¼mje be the energies of

the system before and after modification.

Each of them hits its own box –— i or j

respectively (i and j can coincide). In this

case the transition is accepted with the

probability [3]

pðEi ! EjÞ ¼ min 1;
~gi
~gj

� �

¼ min 1; e
~Si� ~Sj

� �
;

(3)

where ~gi, ~gj, ~Si, ~Sj are current values of i-th

and j-th elements of the array ~g and ~S

correspondingly (actually we operate only

with the array ~S). In the case of failure the

system remains in the initial state. At each

visit of k-box (in case of acceptance new

conformation k¼ j, in case of nonaccep-

tance k¼ i) we change the k-th element of ~S:

D~S is added to ~Sk. A number of these steps

constitute a sweep during which D~S is kept

constant. At each next sweep D~S is reduced:

D~S! cD ~S with increment 0< c< 1. We

used c¼ 0.8� 0.9 and the initial value
, Weinheim www.ms-journal.de
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D~S¼ 0.001. The number of sweeps used was

in the range 30� 60.

Simultaneously with the array ~S the

array of visits V with zero initial values is

introduced. At each MC step we add 1 to

Vk-element that corresponds to a visit of the

state k. We watch that during calculations

the histogram of visits becomes and holds

further sufficiently uniform (‘‘flat’’). Using

this way ES-WL algorithm the auto adjust-

ment of visit probabilities is achieved.

At the end of the computer experiment

when the array of visits becomes homo-

geneous the array of density of states is

calculated as exp(~S(E)) and is normalized

to unity (we designate it as g(E)). This

normalization is important for calculating

the canonical part of entropy and free

energy.
Results and Discussion

Test of the Method (Polymer Chains)

The main aim of our work is the investiga-

tion of star shaped polymers. We precede it

by testing the method on linear chains.

In the first test the distribution of semi-

phantom random walks as a function of the

number of intersections n for chains of

several lengths was estimated (Figure 1).

This distribution is obtained with the aid of

ES-WL-procedure in the same way as it is
Figure 1.

Distribution of the number of semi-phantom confor-

mations as a function of the number of intersections

for N¼ 12 (circles), 20 (diamonds), 30 (triangles), 40

(crosses) [9]. Squares indicate the exact data.
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described before. In this case the range of n

[0,nmax] is known exactly. The expression

for nmax is given below (see equation 4).

The range of n is divided into elements

(boxes) so that the i-th element corresponds

to conformations having i intersections.

Accordingly, we have Nb¼ nmaxþ 1.

The results of the test (Figure 1) are in

good agreement with the available exact

data. For small N (e.g. for N¼ 12) all values

of n can be calculated by direct enumera-

tion of all 6 � 5N-1 semi-phantom conforma-

tions. For greater n it becomes difficult

though for arbitrary N the exact data can be

obtained for the maximum number of

intersections for which the probabilities

are the smallest.

Indeed the maximum number of inter-

sections for a semi-phantom chain with the

length N corresponds to a square with a unit

side length and it can be determined by an

exact formula:

nmax ¼ 3C2
N
4

� � þ C2
N
4

� �
þ1

þ x
N

4

� �
; (4)

where [] is the integer part of the argument,

C2
½N=4� and C2

½N=4�þ1 are the binomial coeffi-

cients, x ¼ N � 4 N
4

� �
and can have values

x¼ 0, 1, 2, 3. Proof of (3) is presented in

Appendix 1.

It is very important that the number of

such conformations (number of squares)

does not depend on N and is equal to

6 � 4¼ 24 (6 directions with 4 cases for each

direction). So the corresponding normal-

ized value of g relatively to the total

number of conformations for the semi-

phantom chain, 6 � 5N-1, is gnmax ¼ 4 � 51�N

Figure 1 shows that our algorithm

enables us to safely obtain distributions

with probability at least down to 10�27. For

N¼ 12, 20, 40 exact values are gnmax ¼
8.19 � 10�8, 2.10 � 10�13, 2.20 � 10�27, against

the obtained ES-WL values gnmax ¼
8.07 � 10�8, 1.90 � 10�13, 1.94 � 10�27. So the

deviations of calculated values from the

exact ones in points of the smallest

probabilities are within 10%.

As a result of the second test the

distributions of SACs g0m as a function of

the number of contacts for N¼ 12, 30, 50,
, Weinheim www.ms-journal.de



Figure 2.

Distribution of self-avoiding conformations (SACs) as

a function of the number of contacts for N¼ 12, 30,

50, 100 (points – this work) [9]. Open circles – data

from work [5] (based on phantom random walks)

Vertical dashed lines are the estimation of mmax for

chains [22]. Subscript ‘‘0’’ in g0m denote that we

consider conformations with 0 intersections.

Figure 3.

Specific excess entropy (relatively to the entropy of a

phantom chain) as a function of inverse number of

segments for stars (filled dots) – WL data, approxi-

mated by least-squares fit (solid line) of the function

f(x)¼ Ax ln(x)þ BxþD; x¼ 1/N [9]. For comparison

results for chains (dashed line) and for rings [5] (dotted

line) are presented.
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100 are presented in Figure 2 in comparison

with data from.[5] Subscript ‘‘0’’ in g0m
denotes that we consider conformations with

0 intersections, subscript ‘‘m’’ denotes the

number of contacts. Vertical dashed lines in

Figure 2 are the estimation of mmax for

chains[22] (equation 2). There is a good

agreement of our data with that from[5] in a

wide range of m though at largest m a

discrepancy is observed. For the greatest N

(N¼ 100) the discrepancy at large m is the

greatest. Here the advantage of semi-phan-

tom random walk in comparison with the

phantom one is clearly demonstrated: it

enables us to obtain the distribution in a

much wider range of contacts than on

the basis of phantom ones[5] (Figure 2).

There still remains a problem of modeling

the compact conformations which make an

essential contribution to the energy at low

temperatures in the case of attraction.[9]

Star Polymer

The model of a 6-arm star polymer is

considered and the excluded volume effect

in the athermal case is studied first. The

specific excess entropy (relative to the

entropy of a corresponding phantom chain)

as a function of the number of monomers N

in the star polymer is obtained and its
Copyright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
dependence on the inverse number of

segments for stars is presented in

Figure 3 compared with analogous data

for chains and for rings.[5] The WL data is

approximated by a least-squares fit (solid

line) of the function f(x)¼Axln(x)þBxþD;

x¼ 1/N in much the same way as it was done

in work.[5] The character of this function

corresponds to the logarithm of the well-

known scaling asymptotic relation for

linear chains.[4] The coefficients obtained

for stars: A¼ 0.7399, B¼ -1.4837, D¼
-0.2494, (in the case of rings they are:

A¼ 1.6996, B¼ -0.7795, D¼ -0.2495;[5]

for chains from the scaling relation:

A¼ -0.1667, B¼ 0.1570, D¼ -0.2476). It is

seen from Figure 3 that at N!1 the

specific excess entropy for all three systems,

stars, rings and chains, tends to the common

limit: values of coefficients D are very close

to each other.

In the thermal case we compare polymer

chains and stars with the same number of

segments (N¼ 30, 72, 120). The distribu-

tions g0m as a function of the number of

contacts (energy) for free chains and stars

obtained with the aid of WL-algorithm are

presented in Figure 4. The comparison

shows that difference between distributions

for chains and stars is noticeable though not
, Weinheim www.ms-journal.de



Figure 4.

Normalized distributions for SACs as a function of the

number of contacts for star with N¼ 30 (circles), 72

(squares), 120 (triangles) and for the chains with equal

number of segment (dots) [9]. Vertical dashed lines are

the estimation of mmax for chains [22].

Figure 5.

Dependences of specific energy on temperature for

stars (solid lines) and chains (dashed lines) [9], e> 0.

hEi/N is in jej units. At the Y-axis the limiting values of

hEi/N for T!1 are labeled. At T! 0 hEi/N! 0.
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drastic. The maxima of distributions for

stars (m¼ 9, 18, 28) are shifted to greater m

relatively to those for chains (m¼ 4, 12, 22).

The reason is that segments in a star are

closer to each other than in a chain because

stars’ arms are fixed at their center. With

the increase of N the relative differences

in positions of these maxima become

smaller.

Distributions g0m enable us to obtain the

thermodynamic properties of investigated

systems such as internal energy, free

energy, entropy and heat capacity in a

wide temperature range.

Using g0m we calculate the thermody-

namic properties:

1) Internal energy:

Eh iðTÞ ¼

Pmmax

m¼0

Em expð�bEmÞg0m
Pmmax

m¼0

expð�bEmÞg0m
;

Em ¼ "m

(5)

2) Heat capacity:

C ¼ @ Eh iðTÞ
@T

(6)

It is equivalent to the fluctuation

equation C(T)¼ (hE2i(T)� (hEi(T))2)/T2.
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3) Entropy:

SðbÞ ¼ S0 þ DSat þ DSðbÞ (7)

S0 ¼ N ln n (8)

DSat ¼ ðN � 1Þ ln n� 1

n

þ ln
ðn� 2Þ!
ðn� 1Þ4

þ ln g0

(9)

DSðbÞ ¼ b Eh i þ ln
Xmmax

m¼0

e�b"mg0m; (10)

where S0 –— entropy of the phantom chain,

n –— the number of nearest neighbors for

the lattice, DSat –— excess athermal part of

the entropy for the star (see Figure 3), proof

of (9) is presented in Appendix 2, DS(b) –—

thermal (canonical) part of the entropy,

b¼ 1/kBT is the inverse temperature. In

Figures 5–8 temperature is presented in

energy units, i.e. designation T0 ¼ kBT/jej
and inverse temperature b0 ¼ 1/T0.

In Figures 5–7 the dependences of

specific energy, specific heat capacity, and

specific excess entropy on temperature are

presented in the repulsion case (e> 0). It is

seen that for linear chains of different

length the dependences of specific energy

on temperature (Figure 5) rises with the

increase of N but differ not strongly from

each other with a tendency to a certain

limiting curve. For stars with the same

number of segments the difference is
, Weinheim www.ms-journal.de



Figure 6.

Dependences of specific heat capacity on temperature

for stars (solid lines) and chains (dashed lines);

e> 0 [9].
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appreciably greater and with the increase of

N the level of curves falls. Energy for a star

is greater than for a chain with the same

number of segments. At T¼ 0 we have

hEi/N¼ 0, and at T!1 we get hEi/N!

ehmiat(N)/N, mh iat¼
Pmmax

m¼0

mg0m
[4]. Limiting

values of hEi/N at T!1 for the star

decreases with the increase of the number

of segments, while for chains they increase.

So we can suppose, than for N!1 the

E/N(T) dependences for stars and chains

tend to the same limiting curve.

Each T-dependence of the specific heat

capacity (Figure 6) has a single maximum

both for chains and stars, at about T¼ 0.52

that signifies structure changes in the

molecules. It should be pointed out here

that in the case of attraction the increase of
Figure 7.

Dependences of specific excess entropy on inverse

temperature for stars (solid lines) and chains (dashed

lines); e> 0 [9].
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the chain length results in sharpening in the

temperature dependencies of the heat

capacity that corresponds to change of

structure having features of the phase

transition. Such behavior was observed

in[10,14] in simulations of non-charged

polymer systems and in modeling of poly-

electrolytes.[7] In the case of repulsion

presented in this work there is observed a

smooth transition from purely athermal

case (SACs) for high temperatures to

complete avoidance of contacts at low

temperatures. The latter can be regarded

as an effective ‘‘swelling’’ of polymer chains

or star arms.

Behavior of entropy (Figure 7) has the

same features as that of energy and heat

capacity. Entropies fall with the decrease of

temperature, for stars the curves are lower

than for chains and there is a tendency to

reach some common limiting curve with the

increase of N.

The above results are presented for the

case of repulsion between monomers.

Corresponding dependences in the case

of attraction (e< 0) are more complex and

are presented with other corresponding

data in.[9]

Using distribution g0m (Figure 4) we can

also express the mean square radius of

gyration dependence on temperature

hR2i(T) using the relation

< R2 > ðTÞ ¼<< R2 >m> ðTÞ

¼

Pmmax

m¼0

< R2 >mexpð�EmbÞg0m
Pmmax

m¼0

expð�EmbÞg0m
; (11)

where hR2im is the average of square radius

of gyration obtained for each number of

contacts m during calculations of g0m.

Dependences of hR2i(T) for chains and

stars are presented both for e< 0 and e> 0

in Figure 8a,b.

Mean square radius of gyration deter-

mines the size of the molecule. For e> 0

dependences monotonically decrease and

for e< 0 they monotonically increase with

temperature. At T!1 the dependences for

e> 0 and e< 0 tend to a common limit. For
, Weinheim www.ms-journal.de



Figure 8.

Mean square radius of gyration dependences on temperature for chains (a) and for stars polymers (b); e> 0

(thick lines), e< 0 (thin lines). Chain length and total number of segments in stars N¼ 30, 72, 120. Horizontal

dashed lines denote the limiting values of hR2i at T!1.
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stars hR2i(T) curves are of the same

character as for chains though for the stars

their values are smaller than for the chains

with the same number of segments due to

more compact structure of the stars.
Conclusion

The entropic sampling within Wang-

Landau algorithm was applied for study
Copyright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
of 3D lattice models of polymer chains and

6-arm stars. In simulations we used a semi-

phantom random walk as a most appro-

priate reference system since in this case

the fraction of self-avoiding conformations

increases significantly compared to the

case when phantom trajectories are used

instead.[4] We shoved that the specific

excess entropy of stars, rings,[5] and linear

chains tends to a common limit as the chain

length tends to infinity. This effect could be
, Weinheim www.ms-journal.de
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expected as long as with the increase of the

total number of segments the relative

contribution of the individual character of

the structure into the specific excess entropy

becomes more and more negligible.

In the thermal case we calculated energy

distributions that allowed us to obtain

thermodynamic properties of the studied

systems in a wide temperatures range:

energy, heat capacity, entropy and mean

square radius of gyration. For the case of

repulsive interaction (e> 0), we showed

that there is a single, vary smooth structural

transition of all studied polymers (chains or

stars of different sizes) with increasing

temperature. The critical temperature of

this transition is practically the same for all

studied systems.

The created computer programs and

obtained data provide us the basis for

possible further studies: considering star

polymers with longer arms and their

different numbers both within lattice and

continuous models; studying various cases

with presence of charged groups; obtaining
nmax ¼ 3C2

½N4 �
þ C2

½N4 �þ1
þ x ½N4 � ¼

3 N
4

� �
!
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4
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� �
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large information on structural properties

e.g. on fluctuation characteristics of the

center of mass, on the average shape of the

star; studying of other non-liner systems

and their complexes with linear chains etc.

We hope also that results of our work could

help for construction the analytical theory

of star-shaped polymers.
Appendix 1

Proof of equation 3. For a semi-phantom

chain the conformation with the maximum

number of intersections is the square with a

unit side. If N is exactly divided by 4, N/4
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monomers are placed in each three angles

of the square and N/4þ 1 are placed in the

fourth angle. The number of intersections is

the number of pairs in each of these nodes.

In each of the first three angles we have

C2
N=4 pairs and in the fourth angle there are

C2
N=4þ1 pairs. Here Ck

n (or ‘‘n over k’’) is the

binomial coefficient, Ck
n ¼ n!

k!ðn�kÞ!. There-

fore in this case the number of intersections

is 3C2
N=4 þ C2

N=4þ1. If N is not necessarily

exact multiple of 4, then N can be presented

in the form N ¼ 4 N
4

� �
þ x, where x is the

residue of division of N by 4; x can have

values 0, 1, 2, 3; [. . .] is the integer part of

the number. Suppose that N ¼ 4 N
4

� �
þ 1.

For the chain of length 4[N/4] maximum

number of intersections is 3C2
½N=4�þC2

½N=4�þ1.

We assume that we attach a monomer

to the chain of length 4[N/4]. Attached

monomer occupies the angle of the square

with the number of monomers [N/4] and

respectively gives addition of [N/4] intersec-

tions. For each next x¼ 2, 3 the contribution

is similar. So we obtained the equation 3.

Also we can simplify this equation:
Appendix 2

Proof of equation 9 for athermal part of the

entropy for the star. Let us write down the

number of semi-phantom conformations

for the 6-arm star on the SC-lattice with

total number of segments N. For generating

the first segment of the first arm there exists

n positions where n¼ 6–the number of

nearest neighbors for the SC lattice; for

generation of the first segment of the

second arm there remains n� 1 positions

etc. The subsequent n(N/n-1)¼N-6 seg-

ments are generated nonreversally and

the number of such conformations is

ðn� 1ÞN�6. So the complete conformation
, Weinheim www.ms-journal.de
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number of the semi-phantom star with

the account of the arms permutations is

n!ðn� 1ÞN�6. In order to obtain the number

of SACs the complete number of semi-

phantom conformations should be multi-

plied by normalized quantity g0 (the share of

SACs among semi-phantom chains) which is

determined in the course of our computer

experiment. Thus the athermal part of the

entropy of the semi-phantom star is

lnðn!ðn� 1ÞN�6g0Þ. The obtained expression

is transformed now in the following way:

lnðn!ðn� 1ÞN�6g0Þ

¼ lnðn!ðn� 1ÞN�6 n
N

nN
g0Þ

¼ ln nN þ lnðn! ðn� 1ÞN�6

nN
n

n
g0Þ

¼ ln nN þ ln n!
n� 1

n

� �N�1ðn� 1Þ�5

n
g0

 !

¼ ln nN þ ðN � 1Þ ln n� 1

n

� �

þ ln n!
ðn� 1Þ�5

n
g0

¼ ln nN þ ðN � 1Þ ln n� 1

n

þ ln
ðn� 2Þ!
ðn� 1Þ4

þ ln g0:

ln nN is the entropy of phantom chain (or

star) with N number of segments. So the

excess entropy is

DSat¼ðN � 1Þ ln n� 1

n
þ ln

ðn� 2Þ!
ðn� 1Þ4

þln g0:
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